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A NEW PROOF OF GLOBAL CONVERGENCE

FOR THE TRIDIAGONAL QUL ALGORITHM
by
W. Hoffmann' and B.N. Parlett' '

Abstract

By exploiting the relation of the QL algorithm to inverse iteration

we obtain a proof of global convergence which is more conceptual and less

computational than previous analyses. The proof uses a new, but simple,

\\
|

error estimate for the first step of inverse iteration.
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1. Introduction
The QR Algorithm has become the preferred method for finding 2/’ the
eigenvalues of a given matrix, symmetric or nonsymmetric. One of the hiah
points in the field of matrix computations is Wilkinson's discovery
[Wilkinson, 1968] that the algorithm, when used with the proper shift

strategy, converges for a!/! symmetric, tridiagonal matrices. This result

permits us to write clean efficient programs for computing these eigenvalues:

there is no need for routine checking for rare unacceptable cases. The
excellent asymptotic convergence rate for the method was already known.

Each iteration in the algorithm is effected by making a sequence of
specially chosen plane rotations. Wilkinson's proof is based on a caretul
scrutiny of the last three of these rotations and a rather complicated com-
putation is involved. A careful, detailed exposition of the proof can be
found in [Lawson and Hanson, 1974, Appendix B].

The result is so nice that one is tempted to seek a proof which does
not require explicit formulae for the elements of the next matrix in the
OR sequence. The one presented here abandons the plane rotations in favor
of the relation of the QR algorithm to inverse iteration, see for instance
[Parlett and Poole, 1973). The discussion is in terms of the QL alaorithm
which is a convenient variation of the original QR algorithm. Section 3
gives more details.

We try to adhere to the standard notational conventions: lower case
roman letters for column vectors, lower case greek letters for scalars (all
real here), and upper case roman letters for matrices (reserving symmetric

T

letters for symmetric matrices). We write 7' for the transpose of 7,

I for (e].ez.....en). and A-\ for A-)\l. All matrices are nxn unless
/T

the contrary is stated, lIxl = vx x and we write tridiagonal matrices A

as shown below:

P A I .
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By gy
A= 082 aq .
g B
- Bn-1 n -

The QL transformation, with shift o, transforms symmetric tridiagonal
A into symmetric tridiagonal A = QTAQ where Q = (q].qz.....qn) is

orthogonal and depends on o.

For the busy reader who is familiar with the subject we present a

brief outline of the argument now. One special piece of notation is needed:

MP
degree k. We observe that
|8,8,] = min N¢(A)g,0 ,
172 ¢eM% {
< 1(A-a;) (A-0)q, i,

I(A-a1)e]rl .

- |8]|T s
< IG]-G - le [y

Only the strict inequality ts really new and a sharper form
of it is used in Sections 5 and 6 to show that (g B(

1 2
< (2/5)(3%“")3§k"))2 for all k and also that ﬁf < |8yBy[/V2. This

establishes global convergence, i.e. ng) + 0, 1in a clean way.

k denotes the set of all monic polynomials (leading coefficient 1) of

Lanczos,

the artful choice,

the connection with inverse iteration, Lemma 2,
since A is tridiagonal,

if o 1is Wilkinson's shift, Lemma 4,

by a characteristic property of

Wilkinson's shift.

(keT) (ke 2




2. Orthogonal Reduction to Tridiagonal Form

Any symmetric matrix M may be reduced to tridiagonal form A by an

orthognoal similarity transformation. In symbols

T

(0) A=a'Mc, 1=6'g-=066 .

In fact, when the off diagonal elements éj are not zero then A is
completely determined by 9 (or by gn). Our interest is in expressions

for products of the éj, j =1,2,... . From the pioneering work [Lanczos,

1950] we can deduce that

~

|8y 851 = minko(M)g, ¥

over all monic polynomials ¢ of degree j with equality only when &(\)
is the leading principal jxj minor of \-A.

However we prefer to use some alternative formulas which yield rather
more information and are also quite well known.

A useful way of understanding the relationships hidden in (0) is to

equate columns on each side of the equation
(1) GA = MG

and deduce that the columns {g].gz.....gj} form an orthonormal basis for

the so-called Krylov subspace Kj of R" which is spanned by
2 =
QI;MQ-';M g]!--onMJ 191 .

Let Pj denote the orthogonal projection of R" onto Kj and let 51 be

its complement. For example, P] = g‘g{. P2 = g]g{ +gzq;.

'J
1
T ———




6
LEMMA 1. et GA = MG with G = (g].....gn) orthogonal, then

958y = PyMgy

Proof. By equating the (1,1), (1,2), and (2,2) elements on each side
of (1) we find

T

a. = T = T = T N =
(2) “] = 91M9] » B] = glMgz 92M91 ’ 02 92M92 .

Now equate first columns on each side of the equation GA = MG and rearrange:

9,8y = Mgy - gyay

il £
(3) Mg, - 9;(9yMg,) , using (2) ,

(I’g]gI)Mg] ’
- P]Mg] .

Next equate the second columns on each side and rearrange:

938 = Mgy - 9505 - 9By
= Mg, -gz(ggﬂgz) -91(91M92) , using (2) ,

(4)
2 T .1
o (I'gzgz'g]g])ngz ’
E = PZMg2 -
: Multiply (4) by B, and use (3) to obtain the formulas in the lemma. 0

In the next section we will apply this lemma to the case when M = A

is also tridiagonal and Mg] lies in the plane of 9, and e,

o S 208

Salealay el e ks
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3. The QL Transform and Inverse Iteration

The QL transform of A is denoted by A, has the same form as A,

and is defined by
(1) A = q'AQ

where Q 1is the orthogonal matrix which satisfies
(2) A-o = QL

and L 1is lower triangular with positive diagonal elements. The scalar o
is called the shift. Note that Q is the result of performing the Gram-
Schmidt orthonormalizing process to the columns of A-0 from right to left.
The QL algorithm iterates the QL transform, choosing an appropriate shift

at each step.

The QL transform is related to the carlier QR transform in a very simple way:

if 1= (e e ..--.&;) and A is the QL transform of A then Al s
the QR transform of IAI. The QL algorithm has some minor advantages from
the programmer's point of view and has become the preferred method. Conse-
quently we will present our results in its terminology.

In practice the matrix Q which turns A into A is never formed
explicitly. Even in thec  the columns of Q are determired in the order
Qe Qqy e+ 29209 Nevertheless A is completely determined by q and
q] connects the QL transformation with simpler processes like inverse
iteration.

We are now going to formulate a result which is quite well known.

D - S it o bl i S




LEMMA 2. et QTAQ = A be the QL tramsform of wnreduced tridia-

gonal A with real shift o. Then q = Qe‘ satigfies
(A-o)q] =eT.

If o 1is an eigenvalue of A them 1 = 0; otherwise 1 1ti8 the

scale factor which ensures that Iq]l =1; 8 T*= I/I(A—o)-]ell.

Proof. Transpose equation (2) above, post multiply by Q, and use
Q=1 to find

(3) (A-0)Q = LT .
Equating column 1 on each side shows that

(4) (A-o)q] = e]!Ln vy >0,
If o 1is not an eigenvalue then

= = -1 .

(5) 1= 19,0 = 1(A-0)" e 12y,

and we have written 1 for Yy If o 1is an eigenvalue then
0 = det(A-o) = det Q- det L .

The Gram-Schmidt process begins with q = (A-o)enlznn. Because A is
unreduced & = l(A-o)enl # 0. Moreover, for the same reason, the last

(n-1) columns of A-c are linearly inderendent. Consequently

£ia 0 5 ' J o= anelyies 3t

3

for all o. It follows that on the last step of the Gram-Schmidt process

a null vector is obtained. Hence Yy =T 0 and q, may be any unit
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vector orthogonal to all the other q's. This gives only a choice of sign |

for Q) and in either case (A-o)q‘ = 0, 0 |

Equation (4) shows that the first column of Q 1is the normalized ;
result of one step of inverse iteration with shift o.
We now use Lemma 2 to get expressions for the off diagonal elements

which are produced in the course of the QL algorithm.

ol
LEMMA 3. et A = QTAQ be the QL tramaform off A with real shift ;
0. Then {
IB]l = 1|sin e]l g
18,85 = v]8, sing,| , : |
where 0, {8 the angle between e, and the Krylov space K,, ‘
i 3 i i |
i - ].2-
|
Proof. Recall that in Lerma 1 P, = 1 -q qT P, = 1-q qT -q qT
——" ] . o A | e B
We have
qzs‘ = P]Aq‘ , Lemma 1
= P](q]o-te]r) , Lemma 2
= PIe)r
= r(e1 - q cos 9‘) :
Further
q3é]§2 = FZAﬁlAq] , lLemma 1
= rPZA(e] -q cosel) , two lines up, :
= er(e]a]'*e 1° % cosO]) . A is tridiagonal, 1

28
P, annihilates X, = span(q‘.Aq])

TB‘ 5292 .
= span(q].e]) A

On taking norms the results follow. (1
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10
Using the same technique it can be shown that

818y By = ByBy - By Tsing .

Lemma 3 holds for any shift strategy but the ¢lobal convergence follows

from a simple bound on T which holds when Wilkinson's shift is used.

4. Wilkinson's Shift

: a B
Given A then Wilkinson's shift w 1is that eigenvalue of L }

By %9

which is closer to &g In case of a tie either eigenvalue may be used.

So we have

2 .
(0y-w)(ay~w) - 8y = 0
and

!a]-wl L3 Ia]-w'l X

Let us write & = (az-a1)/2 and observe that

w, W = (o:.]+cx2)/2 + ¢62+321
This shows that

ool < layl

with equality if, and only if, & = 0. By noting that |R is the geometric

!
mean of la]-wl and (az-w( we have

Ia]-wl g 8 o g
B4 Taz-wl a2~w| -~

with equality if, and only if, & = 0.

*




5. A Residual Estimate for Inverse Iteration

compared with '“1'“2' then e, s a good approximation to an eigenvector

Since A is symmetric and tridiagonal we know that when By is small ]
and Wilkinson's shift « 1is an even better eigenvalue approximation than §
:

ay. A well known way to obtain an improved normalized eigenvector is to

solve for 9, the equation
(1) (A-w)q, = et

where 1 1is the positive scale factor which ensures that Iq]l = 1.

Our concern here is at the opposite extreme. If B] is not necessarily
small and e, is a poor approximation to an eigenvector of A how bad can
(w,q]) be as an approximate eigenpair? A good measure for this approxima-
tion is

T/'Al s

which is the norm of the "residual" vector (A-w)q] relative to JAl.
We now show that (w,q]) cannot be arbitrarily bad; in fact 1 < IRZI.

For convenience we write
(11 -ai-w

)T

and define p = ("1’”2'"3"" by

(2) | (A-w)p = e, .

LEMMA 4. When Wilkinson's shift w 18 used in (1) then




Proof. If w 1is an efgenvalue of A then the QL transform will make

q an eigenvector, so t = 0. From now on assume that A-w is invertible.

From (1) and (2) we have

qp = o/ipl
and

(3) e < vdadad)

The first two equations in (2) are
(4) &‘n] Ry, = 1,
(5) By +Gan2-082n3 « 0.

Recall the definition of w and form (8‘/&,) x (4) - (5) to find
(6) 0+0-Bytty = By/ay .

In fact (6), together with the fact, from (4), that =, and =,

L.

cannot vanish simultaneously, is sufficient to prove that 1t <« |R2|.

However, we can easily bound n$'+n§ away from 0. By elementary geometry

the distance of the origin from the line (4) in the Tty plane is
1/:§§+a§. Hence

-2 2)

2\
trp 2 1y,

(7) n?

and the result follows readily from using (6) and (7) in (3). (8]

The surprisingly simple expression (6) for Ny ensures, by itself, that
81“2 is monotone decreasing. The extra information contained in (7) shows
that the decrease is linear right from the start,

Lemma 4 gives more information than we need. To simplify later discus-
sfon we use the harmonic mean, defined for positive &, n by

H(Ewn) = 2208 ™) .

|
|
|
i
|
|
i
1
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COROLLARY. w2 < n(a;?.!,é)

6. Global Convergence of the QL Algorithm

The QL algorithm produces a sequence of unreduced symmetric tridiagonal

matrices A(k). k =1,2,... and the glorious fact is that, always,
(k)
1

as an increasingly good
(k)
1

B%k) » 0 rapidly as k » o, revealing «
approximation to an eigenvalue of A(]). When R is accepted as
negligible the algorithm continues to transform all but the first row and
column of A(k) and thus all the eigenvalues may be found in turn.

The convergence of Iﬁgk)l need not be monotonic but the key fact is
that {lﬁ§k)8§k)l. k=1,2,...1} 1is monotone decreasing and its limit is 0,
Using the corollary of Lemma 4 in Lemma 3 and noting that H(i.,n) « iy

we obtain

3 SR R e, s |

LEMMA 5. When Wilkingon'a shift {e wsed n the QU algorithm,

(a) Qf < 1° < min{ZRg.Bg.lﬂlﬁzllv?W . }
n A (2 2.2 Ciicliak | Y

(b) (‘*132) S B]‘ S (B]ﬁz) H(‘*]/ﬁzt?‘) < ("“‘2) . ‘

This establishes the monotonic decline of lﬂsk)ﬁgk)l but to see that
the limit is zero it suffices to consider two successiva steps in the
algorithm and so the superscript k can be dropped.

Lemma 5(b) shows that the reduction in 8y 85 is substantial unless

B,/8,] 1s small. However Lenma 5(a) shows that such an unfortunate ratio
'
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cannot persist. The next result makes this precise. We recall that the
harmonic mean, H(&,n), of positive numbers & and n is symmetric, homogeneous

(of degree 1) and monotonic increasing in each of its arguments separately,

THEORFM 1. et A, A, A be three succesaive tevma in the QL

sequence using Wilkingon's shift. Then

(8y8p)2 < (8)8,)%2/(30V8) < (2/5)(8,8,)° .

Proof. é?ég < 85T Lerma 5b for A,
) , Lenma 4 Corollary for A,
) , homogeneity of H,
t“) , monotonicity and Lenma 5 for A,
, homogeneity and symmetry of H,
< H(Bf %ﬁg) H(—{%].M(B$ 1{Sg)) Lemma 4 Corollary for A,
= B]BZH(§,0 )H(E,H(l.ﬁp)) , homogeneity of H, p = Rg/x*:; "

< 81822/(3%@) , maximizing over all p > 0.

We note that

H(Ean ™) HEEHO ) = ‘m’( ! +T)
- 1/['2‘*(]¢*0 )21
< 0

COROLLARY 1. For the QL algorithm with Wilkinson's shift

as K~ o

(K0 g

e A bl
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la(2k+l)8§2k#l)| & |8§2k)3£2k)| a (2/5)k|ﬂ$])ﬂé‘)| 'n

Proof. 1

The asymptotic convergence rate is much better than this, What is
remarkable is that convergence is linear, with a good ratio, right from

the start.

COROLLARY 2. For the QL algorithm with Wilkinaon's shift

ST NS

Proof. By Lemma 5(al, 92 < |8y8,|/v2Z. Convergence follows from
rroot T L

Corollary 1. (1
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Local Convergence

We suppress the fact that all the elements ay, 81, etc. depend on

the iteration count.

We know that as k » « both &]

w10, B] » 0.

k,

In the usual case By > 0 as well. In this case &2 » 8 # 0 because

the eigenvalues of an unreduced tridiagonal matrix are distinct (although

sometimes very close).

convergence rate. From Lemma 3 |@]|

in Lemma 4 does not reflect the asymptotic regime.

where (A-w)p = e,.

t = 1/0ph = 0(1/|m )

Solving these equations as before yields

In the usual regime

-

bt

Wic 3
8182
23 By
8,82 B
182
- = 8
. " bt 1 L, P 4
s o Sl 7
8Y85 i B
2 2

Isin o] = [Fg—%

and using the first terms in the expressions for

A

-3=
By ~ BB/ay = 0(8y8;

3.2 3 2) .

This is better than cubic convergence.

n

In fact, as

The question we take up now is the asymptotic

= 1|sin ell, but the estimate for

k » o

and M
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We have not been able to prove that the analysis given above always
obtains. The possibility remains open that &2 -+ 0, 82 *n# 0, In this
case m, still dominates the other elements of w but it is the third
term in the above expression for ™ which brings this about. Thus, in
such a case

©~ 8715, = 15
61&3/65 ,

1]

|sin 0]}
and

'ﬁ]l & 0”5181,) " 0(9%) .

Thus quadratic convergence occurs even in this unstable, and very special,

eventuality.
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